3 kV RMS Dual Channel Digital Isolators

FEATURES

Up to 100 Mbps data rate (NRZ)
Low propagation delay: 20 ns typical
Low dynamic power consumption
Bidirectional communication
3 V to 5 V level translation
High temperature operation: $125^{\circ} \mathrm{C}$
High common-mode transient immunity: > $\mathbf{2 5} \mathbf{k V} / \mu \mathrm{s}$
Default high output: ADuM1280/ADuM1281
Default low output: ADuM1285/ADuM1286
Narrow body, RoHS-compliant, 8-lead SOIC
Safety and regulatory approvals (pending)
UL recognition: $\mathbf{3 0 0 0}$ V rms for 1 minute per UL 1577
CSA Component Acceptance Notice \#5A
VDE Certificate Of Conformity DIN V VDE V 0884-10 (VDE V 0884-10): 2006-12
$V_{\text {IORM }}=560 \mathrm{~V}$ peak
Qualified for automotive applications
APPLICATIONS
General-purpose multichannel isolation
Data converter isolation
Industrial field bus isolation
Hybrid electric vehicles, battery monitor, and motor drive

GENERAL DESCRIPTION

The ADuM1280/ADuM1281/ADuM1285/ADuM1286 ${ }^{1}$ (also referred to as ADuM128x in this data sheet) are dual-channel digital isolators based on the Analog Devices, Inc., i Coupler ${ }^{\circledR}$ technology. Combining high speed CMOS and monolithic air core transformer technology, these isolation components provide outstanding performance characteristics superior to alternatives, such as optocoupler devices and other integrated couplers.
With propagation delay at 20 ns , pulse width distortion is less than 2 ns for C grade. Channel-to-channel matching is tight at 5 ns for C grade. The two channels of the ADuM128x are independent isolation channels and are available in two channel configurations with three different data rates up to 100 Mbps (see the Ordering Guide). Industrial grade models operate with the supply voltage on either side ranging from 2.7 V to 5.5 V while automotive grades operate from 3.0 V to 5.5 V , providing compatibility with lower voltage systems as well as enabling a voltage translation functionality across the isolation barrier. Unlike other optocoupler alternatives, the ADuM128x isolators have a patented refresh feature that ensures dc correctness in the absence of input logic transitions. When power is first applied or is not yet applied to the input side, the ADuM1280 and ADuM1281 have a default high output, and the ADuM1285 and ADuM1286 have a default low output.
For more information on safety and regulatory approvals, go to http://www.analog.com/icouplersafety.

FUNCTIONAL BLOCK DIAGRAMS

${ }^{1}$ Protected by U.S. Patents $5,952,849 ; 6,873,065 ; 6,903,578 ;$ and $7,075,329$. Other patents are pending.

[^0][^1]
ADuM1280/ADuM1281/ADuM1285/ADuM1286

TABLE OF CONTENTS

Features 1
Applications. 1
General Description 1
Functional Block Diagrams 1
Revision History 2
Specifications3
Electrical Characteristics-5 V Operation (All Grades) 3
Electrical Characteristics-3 V Operation (A, B, and C Grades) 4
Electrical Characteristics-Mixed 5 V/3 V Operation (A, B, and C Grades) 5
Electrical Characteristics-Mixed 3 V/5 V Operation (A, B, and C Grades) 6
Electrical Characteristics-3 V Operation (WA, WB, and WCGrades) 7
Electrical Characteristics—Mixed 5 V/3 V Operation (WA, WB, and WC Grades) 8
Electrical Characteristics-Mixed 3 V/5 V Operation (WA,WB, and WC Grades) 9
Package Characteristics. 10
REVISION HISTORY
3/13—Rev. 0 to Rev. A
Changes to Features Section, Applications Section, and GeneralDescription Section 1
Added Table 13 to Table 21; Renumbererd Sequentially 7
Changes to Table 26 11
Changes to Table 29 and Table 30 13
Changes to Ordering Guide 19
Added Automotive Products Section 19
5/12—Revision 0: Initial Version
Regulatory Information 10
Insulation and Safety-Related Specifications 10
DIN V VDE V 0884-10 (VDE V 0884-10): 2006-12 Insulation Characteristics 11
Recommended Operating Conditions 11
Absolute Maximum Ratings. 12
ESD Caution 12
Pin Configurations and Function Descriptions 13
Typical Performance Characteristics 15
Applications Information 16
PC Board Layout 16
Propagation Delay-Related Parameters. 16
DC Correctness and Magnetic Field Immunity 16
Power Consumption 17
Insulation Lifetime 18
Outline Dimensions 19
Ordering Guide 19
Automotive Products 19

SPECIFICATIONS

ELECTRICAL CHARACTERISTICS—5 V OPERATION (ALL GRADES)

All typical specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD} 1}=\mathrm{V}_{\mathrm{DD} 2}=5 \mathrm{~V}$. Minimum/maximum specifications apply over the entire recommended operation range: $4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 1} \leq 5.5 \mathrm{~V}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 2} \leq 5.5 \mathrm{~V},-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}$, unless otherwise noted. Switching specifications are tested with $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ and CMOS signal levels, unless otherwise noted.

Table 1.

Parameter	Symbol	A, WA Grades			B, WB Grades			C, WC Grades			Unit	Test Conditions
		Min	Typ	Min	Min	Typ	Max	Min	Typ	Max		
SWITCHING SPECIFICATIONS												
Pulse Width	PW	1000			40			10			ns	Within PWD limit
Data Rate				1			25			100	Mbps	Within PWD limit
Propagation Delay	$\mathrm{t}_{\text {PHL, }} \mathrm{t}_{\text {PLH }}$			50			35	13	18	24	ns	50\% input to 50\% output
Pulse Width Distortion	PWD			10			3			2	ns	\| $\mathrm{t}_{\text {PLH }}$ - $\mathrm{t}_{\text {PHL }} \mid$
Change vs. Temperature			7			3			1.5		$\mathrm{ps} /{ }^{\circ} \mathrm{C}$	
Propagation Delay Skew	$t_{\text {PSK }}$			38			12			9	ns	Between any two units at same operating conditions
Channel Matching												
Codirectional	$\mathrm{t}_{\text {PSKCD }}$			5			3			2	ns	
Opposing Direction	tPSKOD			10			6			5	ns	
Jitter			2			2			1		ns	

Table 2.

Parameter	Symbol	1 Mbps-A, B, C,WA, WB, WC Grades			25 Mbps-B, C, WB, WC Grades			$\begin{gathered} 100 \text { Mbps-C, WC } \\ \text { Grades } \end{gathered}$			Unit	Test Conditions
		Min	Typ	Min	Min	Typ	Max	Min	Typ	Max		
SUPPLY CURRENT ADuM1280/ADuM1285												No load
	$\mathrm{I}_{\text {D } 1}$		1.1	1.6		6.2	7.0		20	25	mA	
	$\mathrm{I}_{\mathrm{DD} 2}$		2.7	4.5		4.8	7.0		9.5	15	$m A$	
ADuM1281/ADuM1286	$\mathrm{I}_{\mathrm{DD} 1}$		2.1	2.6		4.9	6.0		15	19	mA	
	$\mathrm{I}_{\mathrm{DD} 2}$		2.3	2.9		4.7	6.4		15.6	19	mA	

Table 3. For All Models

[^2]
ADuM1280/ADuM1281/ADuM1285/ADuM1286

ELECTRICAL CHARACTERISTICS—3 V OPERATION (A, B, AND C GRADES)

All typical specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD} 1}=\mathrm{V}_{\mathrm{DD} 2}=3.0 \mathrm{~V}$. Minimum/maximum specifications apply over the entire recommended operation range: $2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 1} \leq 3.6 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 2} \leq 3.6 \mathrm{~V},-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}$, unless otherwise noted. Switching specifications are tested with $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ and CMOS signal levels, unless otherwise noted.

Table 4.

Parameter	Symbol	A Grade			B Grade			C Grade			Unit	Test Conditions
		Min	Typ	Min	Min	Typ	Max	Min	Typ	Max		
SWITCHINGSPECIFICATIONS												
Pulse Width	PW	1000			40			10			ns	Within PWD limit
Data Rate				1			25			100	Mbps	Within PWD limit
Propagation Delay	$\mathrm{t}_{\text {PHL, }} \mathrm{t}_{\text {PLH }}$			50			35	20	25	33	ns	50\% input to 50\% output
Pulse Width Distortion	PWD			10			3			2.5	ns	$\mid \mathrm{tPLH}$ - $\mathrm{t}_{\text {PHL }} \mid$
Change vs. Temperature			7			3			1.5		$\mathrm{ps} /{ }^{\circ} \mathrm{C}$	
Propagation Delay Skew	$t_{\text {PSK }}$			38			16			12	ns	Between any two units at same operating conditions
Channel Matching												
Codirectional	$t_{\text {PSKCD }}$			5			3			2.5	ns	
Opposing-Direction	tPSKOD			10			6			5	ns	
Jitter			2			2			1		ns	

Table 5.

Parameter	Symbol	1 Mbps-A, B, C Grade			25 Mbps-B, C Grade			100 Mbps-C Grade			Unit	Test Conditions
		Min	Typ	Min	Min	Typ	Max	Min	Typ	Max		
SUPPLY CURRENT												No load
ADuM1280/ADuM1285	$\mathrm{I}_{\mathrm{DD} 1}$		0.75	1.4		5.1	9.0		17	23	mA	
ADuM1281/ADuM1286	$\mathrm{I}_{\mathrm{DD} 2}$		2.0	3.5		2.7	4.6		4.8	9	mA	
	IDD1		1.6	2.1		3.8	5.0		11	15	$m A$	
	$\mathrm{I}_{\mathrm{DD} 2}$		1.7	2.3		3.9	6.2		11	15	mA	

Table 6. For All Models

[^3]
Data Sheet

ADuM1280/ADuM1281/ADuM1285/ADuM1286

ELECTRICAL CHARACTERISTICS—MIXED 5 V/3 V OPERATION (A, B, AND C GRADES)

All typical specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD} 1}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD} 2}=3.0 \mathrm{~V}$. Minimum/maximum specifications apply over the entire recommended operation range: $4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 1} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 2} \leq 3.6 \mathrm{~V}$; and $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}$, unless otherwise noted. Switching specifications are tested with $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ and CMOS signal levels unless otherwise noted.

Table 7.

Parameter	Symbol	A Grade			B Grade			C Grade			Unit	Test Conditions
		Min	Typ	Min	Min	Typ	Max	Min	Typ	Max		
SWITCHINGSPECIFICATIONS												
Pulse Width	PW	1000			40			10			ns	Within PWD limit
Data Rate				1			25			100	Mbps	Within PWD limit
Propagation Delay	$\mathrm{t}_{\text {PHL, }} \mathrm{t}_{\text {PLH }}$			50			35	13	20	26	ns	50\% input to 50\% output
Pulse Width Distortion	PWD			10			3			2	ns	$\left\|\mathrm{t}_{\text {PLH }}-\mathrm{t}_{\text {PHL }}\right\|$
Change vs. Temperature			7			3			1.5		$\mathrm{ps} /{ }^{\circ} \mathrm{C}$	
Propagation Delay Skew	$t_{\text {tpSK }}$			38			16			12	ns	Between any two units at same operating conditions
Channel Matching												
Codirectional	$\mathrm{t}_{\text {PSKCD }}$			5			3			2	ns	
Opposing-Direction	tPsKod			10			6			5	ns	
Jitter			2			2			1		ns	

Table 8.

Parameter	Symbol	1 Mbps-A, B, C Grade			25 Mbps-B, C Grade			100 Mbps-C Grade			Unit	Test Conditions
		Min	Typ	Min	Min	Typ	Max	Min	Typ	Max		
SUPPLY CURRENT												No load
ADuM1280/ADuM1285	$\mathrm{I}_{\text {DD } 1}$		1.1	1.6		6.2	7.0		20	25	mA	
	$\mathrm{I}_{\text {DD } 2}$		2.0	3.5		2.7	4.6		4.8	9.0	mA	
ADuM1281/ADuM1286	$\mathrm{I}_{\mathrm{DD} 1}$		2.1	2.6		4.9	6.0		15	19	mA	
	IDD2		1.7	2.3		3.9	6.2		11	15	mA	

Table 9. For All Models

[^4]
ADuM1280/ADuM1281/ADuM1285/ADuM1286

ELECTRICAL CHARACTERISTICS—MIXED 3 V/5 V OPERATION (A, B, AND C GRADES)

All typical specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD} 1}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD} 2}=5 \mathrm{~V}$. Minimum/maximum specifications apply over the entire recommended operation range: $2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 1} \leq 3.6 \mathrm{~V}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 2} \leq 5.5 \mathrm{~V}$; and $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}$; unless otherwise noted. Switching specifications are tested with $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ and CMOS signal levels, unless otherwise noted.
Table 10.

Parameter	Symbol	A Grade			B Grade			C Grade			Unit	Test Conditions
		Min	Typ	Min	Min	Typ	Max	Min	Typ	Max		
SWITCHING SPECIFICATIONS												
Pulse Width	PW	1000			40			10			ns	Within PWD limit
Data Rate				1			25			100	Mbps	Within PWD limit
Propagation Delay	$\mathrm{t}_{\text {PHL, }} \mathrm{t}_{\text {PLH }}$			50			35	16	24	30	ns	50\% input to 50\% output
Pulse Width Distortion	PWD			10			3			2.5	ns	$\left\|\mathrm{t}_{\text {PLH }}-\mathrm{t}_{\text {PHL }}\right\|$
Change vs. Temperature			7			3			1.5		$\mathrm{ps} /{ }^{\circ} \mathrm{C}$	
Propagation Delay Skew	$t_{\text {PSK }}$			38			16			12	ns	Between any two units at same operating conditions
Channel Matching												
Codirectional	$\mathrm{t}_{\text {PSKCD }}$			5			3			2.5	ns	
Opposing-Direction	tPsKod			10			6			5	ns	
Jitter			2			2			1		ns	

Table 11.

Parameter	Symbol	1 Mbps-A, B, C Grade			25 Mbps-B, C Grade			100 Mbps-C Grade			Unit	Test Conditions
		Min	Typ	Min	Min	Typ	Max	Min	Typ	Max		
SUPPLY CURRENT												No load
ADuM1280/ADuM1285	IDD1		0.75	1.4		5.1	9.0		17	23	mA	
	$\mathrm{I}_{\text {DD2 }}$		2.7	4.5		4.8	7.0		9.5	15	mA	
ADuM1281/ADuM1286	$\mathrm{I}_{\text {DD1 }}$		1.6	2.1		3.8	5.0		11	15	mA	
	IDD2		1.7	2.3		3.9	6.2		11	15	mA	

Table 12. For All Models

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions		
DC SPECIFICATIONS								
Logic High Input Threshold	V_{IH}	0.7 V ${ }_{\text {DDx }}$			V			
Logic Low Input Threshold	VIL			0.3 V VDx	V			
Logic High Output Voltages	V_{OH}	$V_{\text {DDx }}-0.1$	$V_{\text {DDx }}$		V	$\begin{aligned} & \mathrm{I}_{\mathrm{ox}}=-20 \mu \mathrm{~A}, \mathrm{~V}_{1 \mathrm{x}}=\mathrm{V}_{\mathrm{IXH}} \\ & \mathrm{I}_{\mathrm{ox}}=-4 \mathrm{~mA}, \mathrm{~V}_{1 \mathrm{x}}=\mathrm{V}_{\mathrm{IxH}} \\ & \mathrm{I}_{\mathrm{ox}}=20 \mu \mathrm{~A}, \mathrm{~V}_{1 \mathrm{x}}=\mathrm{V}_{\mathrm{IxL}} \\ & \mathrm{I}_{\mathrm{ox}}=4 \mathrm{~mA}, \mathrm{~V}_{1 \mathrm{x}}=\mathrm{V}_{\mathrm{IxL}} \\ & 0 \mathrm{~V} \leq \mathrm{V}_{1 \mathrm{x}} \leq \mathrm{V}_{\mathrm{DDx}} \end{aligned}$		
		VDDx -0.4	$V_{\text {DDx }}-0.2$		V			
Logic Low Output Voltages	VoL		0.0	0.1	V			
			0.2	0.4	V			
Input Current per Channel	11	-10	+0.01	+10	$\mu \mathrm{A}$			
Supply Current per Channel								
Quiescent Input Supply Current	IDDI(Q)		0.4	0.75	mA			
Quiescent Output Supply Current	IDDO(Q)		1.6	2.0	mA			
Dynamic Input Supply Current	IDDII(${ }^{\text {(}}$		0.08		mA/Mbps			
Dynamic Output Supply Current	IDDO(D)		0.03		mA/Mbps			
Undervoltage-Lockout								
Positive V ${ }_{\text {DDx }}$ Threshold	$\mathrm{V}_{\text {DDxUV+ }}$		2.6		V			
Negative VDDx Threshold	V ${ }_{\text {DDxUV- }}$		2.4		V			
Vddx Hysteresis	$V_{\text {DDxUVH }}$		0.2		V			
AC SPECIFICATIONS								
Output Rise/Fall Time	$\mathrm{t}_{\mathrm{R}} / \mathrm{t}_{\mathrm{F}}$			2.5		ns	10\% to 90\%	
Common-Mode Transient Immunity ${ }^{1}$	\|CM			25	35		kV/ $\mu \mathrm{s}$	$\begin{aligned} & \mathrm{V}_{\mathrm{Ix}}=\mathrm{V}_{\mathrm{DDx},} \mathrm{~V}_{\mathrm{CM}}=1000 \mathrm{~V}, \\ & \text { transient magnitude }=800 \mathrm{~V} \end{aligned}$
Refresh Period	tr_{r}		1.6		$\mu \mathrm{s}$			

${ }^{1}|\mathrm{CM}|$ is the maximum common-mode voltage slew rate that can be sustained while maintaining $\mathrm{V}_{0}>0.8 \mathrm{~V}_{\mathrm{DDX}}$. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges.

Data Sheet

ADuM1280/ADuM1281/ADuM1285/ADuM1286

ELECTRICAL CHARACTERISTICS—3 V OPERATION (WA, WB, AND WC GRADES)

All typical specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD} 1}=\mathrm{V}_{\mathrm{DD} 2}=3.0 \mathrm{~V}$. Minimum/maximum specifications apply over the entire recommended operation range: $3.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 1} \leq 3.6 \mathrm{~V}, 3.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 2} \leq 3.6 \mathrm{~V},-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}$, unless otherwise noted. Switching specifications are tested with $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ and CMOS signal levels, unless otherwise noted.

Table 13.

Parameter	Symbol	WA Grade			WB Grade			WC Grade			Unit	Test Conditions
		Min	Typ	Min	Min	Typ	Max	Min	Typ	Max		
SWITCHING SPECIFICATIONS												
Pulse Width	PW	1000			40			10			ns	Within PWD limit
Data Rate				1			25			100	Mbps	Within PWD limit
Propagation Delay	$\mathrm{t}_{\text {PHL, }} \mathrm{t}_{\text {PLH }}$			50			35	20	25	33	ns	50\% input to 50\% output
Pulse Width Distortion	PWD			10			3			2.5	ns	\| tPLH - $\mathrm{t}_{\text {PHL }} \mid$
Change vs. Temperature			7			3			1.5		$\mathrm{ps} /{ }^{\circ} \mathrm{C}$	
Propagation Delay Skew	$t_{\text {PSK }}$			38			16			12	ns	Between any two units at same operating conditions
Channel Matching												
Codirectional	$\mathrm{t}_{\text {PSKCD }}$			5			3			2.5	ns	
Opposing-Direction	tPskod			10			6			5	ns	
Jitter			2			2			1		ns	

Table 14.

Parameter	Symbol	1 Mbps-WA, WB, WC Grades			25 Mbps-WB, WC Grades			100 Mbps-WC Grade			Unit	Test Conditions
		Min	Typ	Min	Min	Typ	Max	Min	Typ	Max		
SUPPLY CURRENT												No load
ADuM1280/ADuM1285	$\mathrm{I}_{\mathrm{DD} 1}$		0.75	1.4		5.1	9.0		17	23	mA	
	$\mathrm{I}_{\mathrm{DD} 2}$		2.0	3.5		2.7	4.6		4.8	9	mA	
ADuM1281/ADuM1286	$\mathrm{I}_{\mathrm{DD} 1}$		1.6	2.1		3.8	5.0		11	15	$m A$	
	$\mathrm{I}_{\text {D } 2}$		1.7	2.3		3.9	6.2		11	15	mA	

Table 15. For All Models

${ }^{1}|C M|$ is the maximum common-mode voltage slew rate that can be sustained while maintaining $\mathrm{V}_{0}>0.8 \mathrm{~V}_{\mathrm{DDX}}$. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges.

ADuM1280/ADuM1281/ADuM1285/ADuM1286

ELECTRICAL CHARACTERISTICS—MIXED 5 V/3 V OPERATION (WA, WB, AND WC GRADES)

All typical specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD} 1}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD} 2}=3.0 \mathrm{~V}$. Minimum/maximum specifications apply over the entire recommended operation range: $4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 1} \leq 5.5 \mathrm{~V}, 3.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 2} \leq 3.6 \mathrm{~V}$; and $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}$, unless otherwise noted. Switching specifications are tested with $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ and CMOS signal levels unless otherwise noted.

Table 16.

Parameter	Symbol	WA Grade			WB Grade			WC Grade			Unit	Test Conditions
		Min	Typ	Min	Min	Typ	Max	Min	Typ	Max		
SWITCHING SPECIFICATIONS												
Pulse Width	PW	1000			40			10			ns	Within PWD limit
Data Rate				1			25			100	Mbps	Within PWD limit
Propagation Delay	$\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$			50			35	13	20	26	ns	50% input to 50% output
Pulse Width Distortion	PWD			10			3			2	ns	\|tPLH - ${ }_{\text {PHHL }} \mid$
Change vs. Temperature			7			3			1.5		$\mathrm{ps} /{ }^{\circ} \mathrm{C}$	
Propagation Delay Skew	$t_{\text {PSK }}$			38			16			12	ns	Between any two units at same operating conditions
Channel Matching												
Codirectional	$\mathrm{t}_{\text {PKKCD }}$			5			3			2	ns	
Opposing-Direction	$\mathrm{t}_{\text {PSKOD }}$			10			6			5	ns	
Jitter			2			2			1		ns	

Table 17.

Parameter	Symbol	1 Mbps-WA, WB, WC Grades			25 Mbps-WB, WC Grades			100 Mbps-WC Grade			Unit	Test Conditions
		Min	Typ	Min	Min	Typ	Max	Min	Typ	Max		
SUPPLY CURRENT												No load
ADuM1280/ADuM1285	IDD1		1.1	1.6		6.2	7.0		20	25	mA	
	IDD2		2.0	3.5		2.7	4.6		4.8	9.0	$m A$	
ADuM1281/ADuM1286	IDD1		2.1	2.6		4.9	6.0		15	19	$m A$	
	IDD2		1.7	2.3		3.9	6.2		11	15	mA	

Table 18. For All Models

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions	
DC SPECIFICATIONS							
Logic High Input Threshold	V_{IH}	$0.7 \mathrm{~V}_{\mathrm{DDx}}$			V		
Logic Low Input Threshold	$\mathrm{V}_{\text {IL }}$			0.3 V VDx	V		
Logic High Output Voltages	V_{OH}	$V_{D D x}-0.1$	$V_{\text {DDx }}$		V	$\begin{aligned} & \mathrm{I}_{\mathrm{ox}}=-20 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{Ix}}=\mathrm{V}_{1 \mathrm{xH}} \\ & \mathrm{I}_{\mathrm{ox}}=-4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{Ix}}=\mathrm{V}_{1 \mathrm{xH}} \\ & \mathrm{I}_{\mathrm{ox}}=20 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{Ix}}=\mathrm{V}_{\mathrm{IxL}} \\ & \mathrm{I}_{\mathrm{ox}}=4 \mathrm{~mA}, \mathrm{~V}_{1 \mathrm{x}}=\mathrm{V}_{\mathrm{IxL}} \\ & 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{Ix}} \leq \mathrm{V}_{\mathrm{DDx}} \end{aligned}$	
		$V_{\text {DDx }}-0.4$	$V_{\text {DDx }}-0.2$		V		
Logic Low Output Voltages	VoL	0 dr	0.0	0.1	V		
			0.2	0.4	V		
Input Current per Channel	1	-10	+0.01	+10	$\mu \mathrm{A}$		
Supply Current per Channel						$0 \mathrm{~V} \leq \mathrm{V}_{1 \mathrm{x}} \leq \mathrm{V}_{\mathrm{DDx}}$	
Quiescent Input Supply Current	IDDI(Q)			0.54	0.75	mA	
Quiescent Output Supply Current	IDDO(Q)		1.2	2.0	mA		
Dynamic Input Supply Current	IDDI(D)		0.09		mA/Mbps		
Dynamic Output Supply Current	IDDO(D)		0.02		mA/Mbps		
Undervoltage Lockout							
Positive V ${ }_{\text {DDX }}$ Threshold	$\mathrm{V}_{\text {DDxUV }+}$		2.6		V		
Negative V ${ }_{\text {DDx }}$ Threshold	VDDxUV-		2.4		V		
$V_{\text {dDx }}$ Hysteresis	V ${ }_{\text {DDxUVH }}$		0.2		V		
AC SPECIFICATIONS							
Output Rise/Fall Time	$\mathrm{t}_{\mathrm{R}} / \mathrm{t}_{\mathrm{F}}$		2.5		ns	10\% to 90\%	
Common-Mode Transient Immunity ${ }^{1}$	\|CM		25	35		kV/ $\mu \mathrm{s}$	$\begin{aligned} & \mathrm{V}_{\text {Ix }}=\mathrm{V}_{\mathrm{DDX},} \mathrm{~V}_{\mathrm{CM}}=1000 \mathrm{~V}, \\ & \text { transient magnitude }=800 \mathrm{~V} \end{aligned}$
Refresh Period	t_{r}		1.6		$\mu \mathrm{s}$		

[^5]
ELECTRICAL CHARACTERISTICS—MIXED 3 V/5 V OPERATION (WA, WB, AND WC GRADES)

All typical specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD} 1}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD} 2}=5 \mathrm{~V}$. Minimum/maximum specifications apply over the entire recommended operation range: $3.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 1} \leq 3.6 \mathrm{~V}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 2} \leq 5.5 \mathrm{~V}$; and $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}$; unless otherwise noted. Switching specifications are tested with $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ and CMOS signal levels, unless otherwise noted.
Table 19.

Parameter	Symbol	WA Grade			WB Grade			WC Grade			Unit	Test Conditions
		Min	Typ	Min	Min	Typ	Max	Min	Typ	Max		
SWITCHING SPECIFICATIONS												
Pulse Width	PW	1000			40			10			ns	Within PWD limit
Data Rate				1			25			100	Mbps	Within PWD limit
Propagation Delay	$\mathrm{t}_{\text {PHL, }} \mathrm{t}_{\text {PLL }}$			50			35	16	24	30	ns	50% input to 50% output
Pulse Width Distortion	PWD			10			3			2.5	ns	$\left\|\mathrm{t}_{\text {PLH }}-\mathrm{t}_{\text {PHL }}\right\|$
Change vs. Temperature			7			3			1.5		$\mathrm{ps} /{ }^{\circ} \mathrm{C}$	
Propagation Delay Skew	$t_{\text {PSK }}$			38			16			12	ns	Between any two units at same operating conditions
Channel Matching												
Codirectional	tPSKCD			5			3			2.5	ns	
Opposing-Direction	tPSKOD			10			6			5	ns	
Jitter			2			2			1		ns	

Table 20.

Parameter	Symbol	1 Mbps-WA, WB, WC Grades			25 Mbps-WB, WC Grades			100 Mbps-WC Grade			Unit	Test Conditions
		Min	Typ	Min	Min	Typ	Max	Min	Typ	Max		
SUPPLY CURRENT												No load
ADuM1280/ADuM1285	IDD1		0.75	1.4		5.1	9.0		17	23	mA	
	IDD2		2.7	4.5		4.8	7.0		9.5	15	mA	
ADuM1281/ADuM1286	IDD1		1.6	2.1		3.8	5.0		11	15	mA	
	ldD2		1.7	2.3		3.9	6.2		11	15	mA	

Table 21. For All Models

[^6]
ADuM1280/ADuM1281/ADuM1285/ADuM1286

PACKAGE CHARACTERISTICS

Table 22.

Parameter	Symbol	Min	Typ \quad Max	Unit	Test Conditions
Resistance (Input-to-Output) 1	$\mathrm{R}_{-\mathrm{O}}$		10^{13}	Ω	
Capacitance (Input-to-Output) 1	$\mathrm{C}_{1-\mathrm{O}}$		2	pF	$\mathrm{f}=1 \mathrm{MHz}$
Input Capacitance ${ }^{2}$	C_{L}		4.0	pF	
IC Junction-to-Ambient Thermal \quad Resistance	θ_{JA}		85	${ }^{\circ} \mathrm{C} / \mathrm{W}$	Thermocouple located at center of package underside

${ }^{1}$ The device is considere a 2-terminal device; Pin 1 through Pin 4 are shorted together and Pin 5 through Pin 8 are shorted together.
${ }^{2}$ Input capacitance is from any input data pin to ground.

REGULATORY INFORMATION

The ADuM128x is pending approval by the organizations listed in Table 23. See Table 27 and Table 28 for recommended maximum working voltages for specific cross-isolation waveforms and insulation levels.

Table 23.

UL (Pending)	CSA (Pending)	VDE (Pending)
Recognized under UL 1577 Component Recognition Program		
Single Protection, 3000 V RMS Isolation Voltage	Approved under CSA Component Acceptance Notice \#5A	Certifiedaccording to DIN V VDE V 0884-10 (VDE V 0884-10):2006-12
File E214100	Basic insulation per CSA 60950-1-03 and IEC 60950-1,400 V rms (565 V peak) maximum working voltage	Reinforced insulation, 560 V peak

${ }^{1}$ In accordance with UL 1577 , each ADuM128x is proof tested by applying an insulation test voltage $\geq 3600 \mathrm{Vrms}$ for 1 second (current leakage detectionlimit $=6 \mu \mathrm{~A}$).
${ }^{2}$ In accordance with DIN V VDE V 0884-10, each ADuM128x is proof tested by applying an insulation test voltage ≥ 1050 V peak for 1 second (partial discharge detection limit $=5 \mathrm{pC}$). The asterisk (*) marked on the component designates DINV VDEV 0884-10 approval.

INSULATION AND SAFETY-RELATED SPECIFICATIONS

Table 24.

Parameter	Symbol	Value	Unit	Conditions
Rated Dielectric Insulation Voltage	L(IO1)	3000	4.0	V rms
mm min	1-minute duration Measured from input terminals to output terminals, shortest distance through air			
Minimum External Air Gap (Clearance)	L(IO2)	4.0	mm min	Measured from input terminals to output terminals, shortest distance path along body
Minimum External Tracking (Creepage)		0.017	mm min	Insulation distance through insulation DIN IEC 112/VDE 0303 Part 1
Minimum Internal Gap (Internal Clearance)	CTI	>400	V	Material Group (DIN VDE 0110, 1/89, Table 1)
Tracking Resistance (Comparative Tracking Index) Isolation Group		II		

DIN V VDE V 0884-10 (VDE V 0884-10): 2006-12 INSULATION CHARACTERISTICS

These isolators are suitable for reinforced electrical isolation within the safety limit data only. Maintenance of the safety data is ensured by protective circuits. The asterisk $\left(^{*}\right)$ marked on packages denotes DIN V VDE V 0884-10 approval.

Table 25.

Description	Conditions	Symbol	Characteristic	Unit
Installation Classification per DIN VDE 0110				
For Rated Mains Voltage $\leq 150 \mathrm{~V}$ rms			I to IV	
For Rated Mains Voltage $\leq 300 \mathrm{~V}$ rms			I to III	
For Rated Mains Voltage $\leq 400 \mathrm{~V}$ rms			I toll	
Climatic Classification			40/105/21	
Pollution Degree per DIN VDE 0110, Table 1			2	
Maximum Working Insulation Voltage		Viorm	560	$\mathrm{V}_{\text {PEAK }}$
Input-to-Output Test Voltage, Method B1	$\mathrm{V}_{\text {IORM }} \times 1.875=\mathrm{V}_{\text {pd(m) }}, 100 \%$ production test, $\mathrm{t}_{\mathrm{ini}}=\mathrm{t}_{\mathrm{m}}=1 \mathrm{sec}$, partial discharge $<5 \mathrm{pC}$	$\mathrm{V}_{\text {pd(}} \mathrm{m}$)	1050	$V_{\text {PEAK }}$
Input-to-Output Test Voltage, Method A				
After Environmental Tests Subgroup 1	$V_{\text {IORM }} \times 1.5=V_{\text {pd }(m), ~} \mathrm{t}_{\text {ini }}=60 \mathrm{sec}, \mathrm{t}_{\mathrm{m}}=10 \mathrm{sec}$, partial discharge $<5 \mathrm{pC}$	$\mathrm{V}_{\text {pd(}} \mathrm{m}$)	840	$\mathrm{V}_{\text {PEAK }}$
After Input and/or Safety Test Subgroup 2 and Subgroup 3	$V_{\text {IORM }} \times 1.2=V_{\text {pd }(m)}, t_{\text {ini }}=60 \mathrm{sec}, \mathrm{t}_{\mathrm{m}}=10 \mathrm{sec}$, partial discharge $<5 \mathrm{pC}$	$\mathrm{V}_{\text {pd(}}$ m)	672	$V_{\text {PEAK }}$
Highest Allowable Overvoltage		$V_{\text {İTM }}$	4000	$\mathrm{V}_{\text {PEAK }}$
Withstand Isolation Voltage	1 minute withstand rating	V ISo	3000	$V_{\text {RMS }}$
Surge Isolation Voltage	$V_{\text {PEAK }}=10 \mathrm{kV}, 1.2 \mu \mathrm{~s}$ rise time, $50 \mu \mathrm{~s}, 50 \%$ fall time	VIOSM	6000	$V_{\text {PEAK }}$
Safety Limiting Values	Maximum value allowed in the event of a failure (see Figure 3)			
Case Temperature		T_{5}	150	${ }^{\circ} \mathrm{C}$
Side 1 lod ${ }^{\text {Current }}$		IS_{51}	290	mA
Insulation Resistance at T_{5}	$\mathrm{V}_{10}=500 \mathrm{~V}$	Rs	$>10^{9}$	Ω

Figure 3. Thermal Derating Curve at $V_{D D x}=5 \mathrm{~V}$, Dependence of SafetyLimiting Values with Case Temperature per DIN V VDE V 0884-10

RECOMMENDED OPERATING CONDITIONS

Table 26.

Parameter	Symbol	Min	Max	Unit
Operating Temperature	T_{A}	-40	+125	${ }^{\circ} \mathrm{C}$
Supply Voltages 1	$\mathrm{~V}_{\mathrm{DD} 1}, \mathrm{~V}_{\mathrm{DD} 2}$			
$\quad \mathrm{~A}, \mathrm{~B}$, and C Grades		2.7	5.5	V
\quad WA, WB, and WC Grades		3.0	5.5	V
Input Signal Riseand Fall Times			1.0	ms

${ }^{1}$ See the DC Correctness and Magnetic Field Immunity section.

ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 27.

Parameter	Rating
Storage Temperature $\left(T_{S T}\right)$ Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Operating Temperature	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
(T_{A}) Range	
Supply Voltages $\left(\mathrm{V}_{\mathrm{DD} 1}, \mathrm{~V}_{\mathrm{DD} 2}\right)$	-0.5 V to +7.0 V
Input Voltages $\left(\mathrm{V}_{\mathrm{IA}}, \mathrm{V}_{\mathrm{IB}}\right)$	-0.5 V to $\mathrm{V}_{\mathrm{DDI}}+0.5 \mathrm{~V}$
Output Voltages $\left(\mathrm{V}_{\mathrm{OA},}, \mathrm{V}_{\mathrm{OB}}\right)$	-0.5 V to $\mathrm{V}_{\mathrm{DD} 2}+0.5 \mathrm{~V}$
Average Output Current per Pin ${ }^{1}$	
Side 1 (lo1)	-10 mA to +10 mA
Side $2\left(\mathrm{l}_{02}\right)$	-10 mA to +10 mA
Common-Mode Transients ${ }^{2}$	$-100 \mathrm{kV} / \mu \mathrm{s}$ to $+100 \mathrm{kV} / \mu \mathrm{s}$

${ }^{1}$ See Figure 3 for maximum rated current values for various temperatures.
${ }^{2}$ Refers to common-mode transients across the insulation barrier. Commonmode transients exceeding the absolute maximum ratings may cause latch-up or permanent damage.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

Table 28. Maximum Continuous Working Voltage ${ }^{1}$

Parameter	Max	Unit	Constraint
AC Voltage, Bipolar Waveform	565	V peak	50-year minimum lifetime
AC Voltage, Unipolar Waveform			
\quad Basic Insulation	1131	V peak	Maximum approved working voltage per IEC 60950-1
Reinforced Insulation	560	V peak	Maximum approved working voltage per IEC 60950-1 and VDE V 0884-10
DC Voltage			
Basic Insulation	1131	V peak	Maximum approved working voltage per IEC 60950-1
Reinforced Insulation	560	V peak	Maximum approved working voltage per IEC 60950-1 and VDE V 0884-10

${ }^{1}$ Refers to continuous voltage magnitude imposed across the isolation barrier. See the Insulation Lifetime section for more details.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

$\mathrm{V}_{\mathrm{DD} 1} 1$	ADuM1280/	8	$\mathrm{V}_{\mathrm{DD} 2}$
$\mathrm{V}_{\mathrm{IA}} 2$	ADuM1285	7	$\mathrm{V}_{\text {OA }}$
$\mathrm{V}_{\text {IB }}{ }^{3}$	OP VIEW	6	V_{OB}
$\mathrm{GND}_{1} 4$	(Not to Scale)	5	GND_{2}

Figure 4. ADuM1280/ADuM1285 Pin Configuration
Table 29. ADuM1280/ADuM1285 Pin Function Descriptions

Pin No.	Mnemonic	Description
1	$\mathrm{V}_{\mathrm{DD} 1}$	Supply Voltage for Isolator Side 1 (2.7 V to 5.5 V for A, B, and C grades, 3.0 V to 5.5 V for WA , WB, and WC grades).
2	$V_{\text {IA }}$	Logic Input A.
3	$V_{\text {IB }}$	Logic Input B.
4	GND_{1}	Ground 1. Ground reference for Isolator Side 1.
5	GND_{2}	Ground 2. Ground reference for Isolator Side 2.
6	$\mathrm{V}_{\text {OB }}$	Logic Output B.
7	VoA	Logic Output A.
8	$V_{\text {DD2 }}$	Supply Voltage for Isolator Side 2 (2.7 V to 5.5 V for A, B, and C grades, 3.0 V to 5.5 V for WA, WB, and WC grades).

Figure 5. ADuM1281/ADuM1286 Pin Configuration
Table 30. ADuM1281/ADuM1286 Pin Function Descriptions

Pin No.	Mnemonic	Description
1	VD1	Supply Voltage for Isolator Side 1 (2.7 V to 5.5 V for A, B, and C grades, 3.0 V to 5.5 V for WA , WB, and WC grades).
2	$V_{O A}$	Logic Output A.
3	$V_{\text {IB }}$	Logic Input B.
4	GND_{1}	Ground 1. Ground reference for Isolator Side 1.
5	GND_{2}	Ground 2. Ground reference for Isolator Side 2.
6	$V_{\text {OB }}$	Logic Output B.
7	$V_{\text {IA }}$	Logic Input A.
8	$V_{\text {DD2 }}$	Supply Voltage for Isolator Side 2 (2.7 V to 5.5 V for A, B, and C grades, 3.0 V to 5.5 V for WA, WB, and WC grades).

For specific layout guidelines, refer to the AN-1109 Application Note, Recommendations for Control of Radiated Emissions with iCoupler Devices.

Table 31. ADuM1280 Truth Table (Positive Logic)

$\mathrm{V}_{\text {IA }}$ Input	$\mathrm{V}_{\text {IB }}$ Input	$\mathrm{V}_{\text {DD } 1}$ State	$\mathrm{V}_{\text {DD } 2}$ State	$\mathrm{V}_{\text {oA }}$ Output	V oB Output	Notes
H	H	Powered	Powered	H	H	
L	L	Powered	Powered	L	L	
H	L	Powered	Powered	H	L	
L	H	Powered	Powered	L	H	
L	L	Unpowered	Powered	H	H	Outputs return to the input state within $1.6 \mu \mathrm{~s}$ of $\mathrm{V}_{\text {DII }}$ power restoration.
X	X	Powered	Unpowered	Indeterminate	Indeterminate	Outputs return to the input state within $1.6 \mu \mathrm{~s}$ of $V_{\text {DDO }}$ power restoration.

Table 32. ADuM1281 Truth Table (Positive Logic)

$\mathrm{V}_{\text {IA }}$ Input	VIB Input	$\mathrm{V}_{\mathrm{DD} 1}$ State	$\mathrm{V}_{\mathrm{DD} 2}$ State	$\mathrm{V}_{\text {oA }}$ Output	V oB Output	Notes
H	H	Powered	Powered	H	H	
L	L	Powered	Powered	L	L	
H	L	Powered	Powered	H	L	
L	H	Powered	Powered	L	H	
X	L	Unpowered	Powered	Indeterminate	H	Outputs return to the input state within $1.6 \mu \mathrm{~S}$ of $\mathrm{V}_{\mathrm{DD} 1}$ power restoration.
L	X	Powered	Unpowered	H	Indeterminate	Outputs return to the input state within $1.6 \mu \mathrm{~s}$ of $\mathrm{V}_{\mathrm{DDO}}$ power restoration.

Table 33. ADuM1285 Truth Table (Positive Logic)

$\mathrm{V}_{\text {IA }}$ Input	$\mathrm{V}_{\text {IB }}$ Input	$\mathrm{V}_{\text {DD } 1}$ State	$\mathrm{V}_{\mathrm{DD} 2}$ State	$\mathrm{V}_{\text {OA }}$ Output	V oB Output	Notes
H	H	Powered	Powered	H	H	
L	L	Powered	Powered	L	L	
H	L	Powered	Powered	H	L	
L	H	Powered	Powered	L	H	
L	L	Unpowered	Powered	L	L	Outputs return to the input state within $1.6 \mu \mathrm{~s}$ of $\mathrm{V}_{\text {DII }}$ power restoration.
X	X	Powered	Unpowered	Indeterminate	Indeterminate	Outputs return to the input state within $1.6 \mu \mathrm{~s}$ of $\mathrm{V}_{\text {DDO }}$ power restoration.

Table 34. ADuM1286 Truth Table (Positive Logic)

$\mathrm{V}_{\text {IA }}$ Input	$\mathrm{V}_{\text {IB }}$ Input	V $\mathrm{DD1}$ State	$\mathrm{V}_{\mathrm{DD} 2}$ State	VoA Output	Voв Output	Notes
H	H	Powered	Powered	H	H	
L	L	Powered	Powered	L	L	
H	L	Powered	Powered	H	L	
L	H	Powered	Powered	L	H	
X	L	Unpowered	Powered	Indeterminate	L	Outputs return to the input state within $1.6 \mu \mathrm{~s}$ of $\mathrm{V}_{\mathrm{DD} 1}$ power restoration.
L	x	Powered	Unpowered	L	Indeterminate	Outputs return to the input state within $1.6 \mu \mathrm{~s}$ of $\mathrm{V}_{\text {DDo }}$ power restoration.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 6. Typical Supply Current per Input Channel vs. Data Rate for 5 V and 3 V Operation

Figure 7. Typical Supply Current per Output Channel vs. Data Rate for 5 V and 3 V Operation (No Output Load)

Figure 8. Typical Supply Current per Output Channel vs. Data Rate for 5 V and 3 V Operation (15 pF Output Load)

Figure 9. Typical ADuM1280 or ADuM1285 VDDI Supply Current vs. Data Rate for 5 V and 3 V Operation

Figure 10. Typical ADuM1280 or ADuM1285 VDD2 Supply Current vs. Data Rate for 5 V and 3 V Operation

Figure 11. Typical ADuM1281 or ADuM1286 V $V_{D 1}$ or $V_{D D 2}$ Supply Current vs. Data Rate for 5 V and 3 V Operation

APPLICATIONS INFORMATION

PC BOARD LAYOUT

The ADuM128x digital isolator requires no external interface circuitry for the logic interfaces. Power supply bypassing is strongly recommended at both input and output supply pins $V_{D D 1}$ and $V_{\text {DD } 2}$ (see Figure 12). The capacitor value should be between $0.01 \mu \mathrm{~F}$ and $0.1 \mu \mathrm{~F}$. The total lead length between both ends of the capacitor and the input power supply pin should not exceed 20 mm .

The ADuM128x can readily meet CISPR 22 Class A (and FCC Class A) emissions standards, as well as the more stringent CISPR 22 Class B (and FCC Class B) standards in an unshielded environment, with proper PCB design choices. Refer to the AN-1109 Applicaton Note, Recommendations for Control of Radiated Emissions with iCoupler Devices for PCBrelated EMI mitigation techniques, including board layout and stack-up issues.

PROPAGATION DELAY-RELATED PARAMETERS

Propagation delay is a parameter that describes the time it takes a logic signal to propagate through a component. The input-tooutput propagation delay time for a high-to-low transition may differ from the propagation delay time of a low-to-high transition.

Figure 12. Propagation Delay Parameters
Pulse width distortion is the maximum difference between these two propagation delay values and an indication of how accurately the timing of the input signal is preserved.
Channel-to-channel matching refers to the maximum amount the propagation delay differs between channels within a single ADuM128x component.

Propagation delay skew refers to the maximum amount the propagation delay differs between multiple ADuM128x components operating under the same conditions.

DC CORRECTNESS AND MAGNETIC FIELD IMMUNITY

Positive and negative logic transitions at the isolator input cause narrow ($\sim 1 \mathrm{~ns}$) pulses to be sent via the transformer to the decoder. The decoder is bistable and is, therefore, either set or reset by the pulses indicating input logic transitions. In the absence of logic transitions at the input for more than $\sim 1.6 \mu \mathrm{~s}$, a periodic set of refresh pulses indicative of the correct input state are sent to ensure dc correctness at the output.

If the decoder receives no pulses for more than about $6.4 \mu \mathrm{~s}$, the input side is assumed to be unpowered or nonfunctional, in which case, the isolator output is forced to a default low state by the watchdog timer circuit.
The limitation on the device's magnetic field immunity is set by the condition in which induced voltage in the transformer receiving coil is sufficiently large to either falsely set or reset the decoder. The following analysis defines such conditions. The ADuM1280 is examined in a 3 V operating condition because it represents the most susceptible mode of operation of this product.

The pulses at the transformer output have an amplitude greater than 1.5 V . The decoder has a sensing threshold of about 1.0 V , therefore establishing a 0.5 V margin in which induced voltages can be tolerated. The voltage induced across the receiving coil is given by

$$
\mathrm{V}=(-d \beta / d t) \sum \pi r_{n}^{2} ; n=1,2, \ldots, N
$$

where:
β is the magnetic flux density.
r_{n} is the radius of the $n^{\text {th }}$ turn in the receiving coil.
N is the number of turns in the receiving coil.
Given the geometry of the receiving coil in the ADuM1280 and an imposed requirement that the induced voltage be, at most, 50% of the 0.5 V margin at the decoder, a maximum allowable magnetic field is calculated, as shown in Figure 13.

Figure 13. Maximum Allowable External Magnetic Flux Density

Data Sheet

For example, at a magnetic field frequency of 1 MHz , the maximum allowable magnetic field of 0.08 kgauss induces a voltage of 0.25 V at the receiving coil. This is about 50% of the sensing threshold and does not cause a faulty output transition. If such an event occurs, with the worst-case polarity, during a transmitted pulse, it would reduce the received pulse from $>1.0 \mathrm{~V}$ to 0.75 V . This is still well above the 0.5 V sensing threshold of the decoder.

The preceding magnetic flux density values correspond to specific current magnitudes at given distances away from the ADuM1280 transformers. Figure 14 expresses these allowable current magnitudes as a function of frequency for selected distances. The ADuM1280 is very insensitive to external fields. Only extremely large, high frequency currents, very close to the component could potentially be a concern. For the 1 MHz example noted, one would have to place a 0.2 kA current 5 mm away from the ADuM1280 to affect component operation.

Figure 14. Maximum Allowable Current for Various Current to ADuM1280 Spacings

Note that at combinations of strong magnetic field and high frequency, any loops formed by printed circuit board traces could induce sufficiently large error voltages to trigger the thresholds of succeeding circuitry. Take care to avoid PCB structures that form loops.

POWER CONSUMPTION

The supply current at a given channel of the ADuM128x isolator is a function of the supply voltage, the data rate of the channel, and the output load of the channel.
For each input channel, the supply current is given by

$$
\begin{array}{ll}
I_{D D I}=I_{D D I}(Q) & f \leq 0.5 f_{r} \\
I_{D D I}=I_{D D I(D)} \times\left(2 f-f_{r}\right)+I_{D D I(Q)} & f>0.5 f_{r}
\end{array}
$$

For each output channel, the supply current is given by

$$
\begin{array}{rr}
I_{D D O}=I_{D D O(Q)} & f \leq 0.5 f_{r} \\
I_{D D O}=\left(I_{D D O(D)}+\left(0.5 \times 10^{-3}\right) \times C_{L} \times V_{D D O}\right) \times\left(2 f-f_{r}\right)+I_{D D O(Q)} \\
f>0.5 f_{r}
\end{array}
$$

where:
$I_{D D I(D)}, I_{D D O}(\mathbb{D})$ are the input and output dynamic supply currents per channel (mA/Mbps).
C_{L} is the output load capacitance (pF).
$V_{D D O}$ is the output supply voltage (V).
f is the input logic signal frequency (MHz); it is half the input data rate, expressed in units of Mbps.
f_{r} is the input stage refresh rate $(\mathrm{Mbps})=1 / \mathrm{t}_{\mathrm{r}}(\mu \mathrm{s})$.
$I_{D D I(Q)}, I_{D D O}(Q)$ are the specified input and output quiescent supply currents (mA).

To calculate the total $V_{D D 1}$ and $V_{D D 2}$ supply current, the supply currents for each input and output channel corresponding to $V_{D D 1}$ and $V_{D D 2}$ are calculated and totaled. Figure 6 and Figure 7 show per-channel supply currents as a function of data rate for an unloaded output condition. Figure 8 shows the per-channel supply current as a function of data rate for a 15 pF output condition. Figure 9 through Figure 11 show the total $V_{D D 1}$ and $\mathrm{V}_{\mathrm{DD} 2}$ supply current as a function of data rate for ADuM1280/ ADuM1281 channel configurations.

ADuM1280/ADuM1281/ADuM1285/ADuM1286

INSULATION LIFETIME

All insulation structures eventually break down when subjected to voltage stress over a sufficiently long period. The rate of insulation degradation is dependent on the characteristics of the voltage waveform applied across the insulation. In addition to the testing performed by the regulatory agencies, Analog Devices carries out an extensive set of evaluations to determine the lifetime of the insulation structure within the ADuM128x.

Analog Devices performs accelerated life testing using voltage levels higher than the rated continuous working voltage. Acceleration factors for several operating conditions are determined. These factors allow calculation of the time to failure at the actual working voltage. The values shown in Table 28 summarize the peak voltage for 50 years of service life for a bipolar ac operating condition and the maximum CSA/VDE approved working voltages. In many cases, the approved working voltage is higher than the 50-year service life voltage. Operation at these high working voltages can lead to shortened insulation life in some cases.

The insulation lifetime of the ADuM128x depends on the voltage waveform type imposed across the isolation barrier. The iCoupler insulation structure degrades at different rates depending on whether the waveform is bipolar ac, unipolar ac, or dc. Figure 15, Figure 16, and Figure 17 illustrate these different isolation voltage waveforms.

Bipolar ac voltage is the most stringent environment. The goal of a 50 -year operating lifetime under the ac bipolar condition determines the Analog Devices recommended maximum working voltage.

In the case of unipolar ac or dc voltage, the stress on the insulation is significantly lower. This allows operation at higher working voltages while still achieving a 50 -year service life. The working voltages listed in Table 28 can be applied while maintaining the 50 -year minimum lifetime provided the voltage conforms to either the unipolar ac or dc voltage case. Any crossinsulation voltage waveform that does not conform to Figure 16 or Figure 17 should be treated as a bipolar ac waveform, and its peak voltage should be limited to the 50 -year lifetime voltage value listed in Table 28.

Note that the voltage presented in Figure 17 is shown as sinusoidal for illustration purposes only. It is meant to represent any voltage waveform varying between 0 V and some limiting value. The limiting value can be positive or negative, but the voltage cannot cross 0 V .

Figure 15. Bipolar AC Waveform

RATED PEAK VOLTAGE

RATED PEAK VOLTAGE

Figure 17. DC Waveform

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MS-012-AA
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

Figure 18. 8-Lead Standard Small Outline Package [SOIC_N] Narrow Body (R-8)
Dimensions shown in millimeters (inches)

ORDERING GUIDE

Model ${ }^{1,2,3}$	No. of Inputs, VDD 1 Side	No. of Inputs, VDD2 Side	Max Data Rate	Max Prop Delay, 5 V	Output Default State	Temperature Range	Package Description	Package Option
ADuM1280ARZ	2	0	1 Mbps	50	High	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead SOIC_N	R-8
ADuM1280WARZ	2	0	1 Mbps	50	High	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead SOIC_N	R-8
ADuM1280BRZ	2	0	25 Mbps	35	High	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead SOIC_N	R-8
ADuM1280WBRZ	2	0	25 Mbps	35	High	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead SOIC_N	R-8
ADuM1280CRZ	2	0	100 Mbps	24	High	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead SOIC_N	R-8
ADuM1280WCRZ	2	0	100 Mbps	24	High	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead SOIC_N	R-8
ADuM1281ARZ	1	1	1 Mbps	50	High	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead SOIC_N	R-8
ADuM1281WARZ	1	1	1 Mbps	50	High	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead SOIC_N	R-8
ADuM1281BRZ	1	1	25 Mbps	35	High	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead SOIC_N	R-8
ADuM1281WBRZ	1	1	25 Mbps	35	High	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead SOIC_N	R-8
ADuM1281CRZ	1	1	100 Mbps	24	High	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead SOIC_N	R-8
ADuM1281WCRZ	1	1	100 Mbps	24	High	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead SOIC_N	R-8
ADuM1285ARZ	2	0	1 Mbps	50	Low	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead SOIC_N	R-8
ADuM1285WARZ	2	0	1 Mbps	50	Low	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead SOIC_N	R-8
ADuM1285BRZ	2	0	25 Mbps	35	Low	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead SOIC_N	R-8
ADuM1285WBRZ	2	0	25 Mbps	35	Low	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead SOIC_N	R-8
ADuM1285CRZ	2	0	100 Mbps	24	Low	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead SOIC_N	R-8
ADuM1285WCRZ	2	0	100 Mbps	24	Low	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead SOIC_N	R-8
ADuM1286ARZ	1	1	1 Mbps	50	Low	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead SOIC_N	R-8
ADuM1286WARZ	1	1	1 Mbps	50	Low	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead SOIC_N	R-8
ADuM1286BRZ	1	1	25 Mbps	35	Low	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead SOIC_N	R-8
ADuM1286WBRZ	1	1	25 Mbps	35	Low	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead SOIC_N	R-8
ADuM1286CRZ	1	1	100 Mbps	24	Low	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead SOIC_N	R-8
ADuM1286WCRZ	1	1	100 Mbps	24	Low	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead SOIC_N	R-8

${ }^{1} \mathrm{Z}=$ RoHS Compliant Part.
${ }^{2}$ Tape and reel are available. The addition of an "-RL7" suffix designates a 7" (1,000 units) tape and reel option.
${ }^{3} \mathrm{~W}=$ Qualified for Automotive Applications.

AUTOMOTIVE PRODUCTS

The ADuM1280W, ADuM1281W, ADuM1285W, and ADuM1286W models are available with controlled manufacturing to support the quality and reliability requirements of automotive applications. Note that these automotive models may have specifications that differ from the commercial models; therefore, designers should review the Specifications section of this data sheet carefully. Only the automotive grade products shown are available for use in automotive applications. Contact your local Analog Devices account representative for specific product ordering information and to obtain the specific Automotive Reliability reports for these models.

NOTES

[^0]: Rev. A
 Document Feedback
 Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

[^1]: One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2012-2013 Analog Devices, Inc. All rights reserved. Technical Support

[^2]: ${ }^{1} / C M \mid$ is the maximum common-mode voltage slew rate that can be sustained while maintaining $\mathrm{V}_{0}>0.8 \mathrm{~V}_{\mathrm{DDx}}$. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges.

[^3]: ${ }^{1}|C M|$ is the maximum common-mode voltage slew rate that can be sustained while maintaining $\mathrm{V}_{0}>0.8 \mathrm{~V}_{\mathrm{DDX}}$. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges.

[^4]: ${ }^{1}|C M|$ is the maximum common-mode voltage slew rate that can be sustained while maintaining $\mathrm{V}_{0}>0.8 \mathrm{~V}_{\mathrm{DDx}}$. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges.

[^5]: | $\mathrm{CM} \mid$ is the maximum common-mode voltage slew rate that can be sustained while maintaining $\mathrm{V}_{0}>0.8 \mathrm{~V}_{\mathrm{DDx}}$. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges.

[^6]: ${ }^{1}|C M|$ is the maximum common-mode voltage slew rate that can be sustained while maintaining $\mathrm{V}_{0}>0.8 \mathrm{~V}_{\text {DDx }}$. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges.

